Formalizing Simplicial Type Theory

Theofanis Chatzidiamantis-Christoforidis
University of Bonn

Acknowledgments. This work is part of an M.Sc. thesis project at the University of Bonn, supervised by Nima Rasekh. It consists of contributions to a collaborative formalization project in the Rzk proof assistant. We point
to [3] for more details on Rzk and the ongoing project.

Why oco-categories? Sets vs Types vs Categories - The higher version Why synthetic oo-categories?

e Homotopy theory: A higher category with objects, mor- | Simplicial type theory, introduced in [1], extends homotopy type
phisms, 2-morphisms, etc., can replace spaces, con- Rezk types ¢ (00, 1)-categories ’ T dd directed theory by equipping types with hom-types, i.e., types of directed
tinuous maps, homotopies, homotopies between homo- ?ntemgfe%ety&%ps arrows, which, under certain conditions, make types formally
toples... We obtain homotopy-coherent structures, which types < 0o-groupoids represent oco-categories. We can:
is not the case for 7 op. Higher Category Theory = J Homotopy Type Theor . o

| P | | | ' g J - y ’ i Ayp y e Prove statements about higher categories, independent of
In the same way, a higher category with all its morphisms \ % model
being invertible can replace the notion of a space, with its Spaces | | |
points, paths, homotopies and higher homotopies. Such X e Do higher category theory in a simpler framework: Models
objects are called co-groupoids. N ) of oo-categories are generally hard to work with.
| | | Category Theory 2 > Type Theory . . .

e Category theory, higher algebra: Properties up to higher -~ -~ e Formalize such statements in a proof assistant. Type
coherences, e.g. Associativity (Axc-algebras), commuta- \ J / theory automatically provides us with computer-checkable
t|V|ty (Eoo_rings)_ Unique Compositions up to homotopy_ Sets pl’OOfS via different (pOSSIb|y iﬂteraCtiVe) pI’OOf assistants.

Spaces and oo-groupoids The higher groupoidal structure of types in homotopy type theory

F b A, th | dentity t

Definition. The simplex category A has objects [n] . ={0,1, ..., n} and morphisms order-preserving maps. orany @ SIS 15 an [AentLy Bype JR—

A simplcial set is a functor A°P? — Set. S .= Fun(A°P, Set). We denote X, = X(n) for X € Obj(S). A

We define the standard n-simplex A" :== Homa(—, [n]). By the Yoneda lemma, Homg(A", X) = X,,. where terms are paths p:a = b.
Then we can have higher paths

e We can visualize A as a point 0, Al as a directed interval 0 — 1, A? as a filled triangle ~ L N H2p ~(a=pb) 9
0 JL) 2 between paths, paths between them, etc.

3
A~ as a tetrahedron, etc. Theorem. On paths, there are

e \We can now make the analogy: Xy Is the set of points, X7 I1s maps, X5 Is homotopies between maps. o Inverses x =,y — y =4 X

. " . " . |
e \We define the horn A" as the union of all faces of A" except the /-th one. o Concatenations X =y — Yy = X — X =4 Z

/\f’ — X o Witnesses for associativity, etc.
Definition. A simplicial set X i1s a Kan complex if all horns in X lift to a simplex: A _ _ _ _

b Theorem (Kapulkin-Lumsdaine/Voevodsky). There is a model of homotopy type theory in S.

AI’)
Kan complexes are a model for oo-groupoids! in Kan complexes behave like paths:

g X o I Building types with directed arrows as “simplicial objects in types”
Example. If we have maps f, g € X1, we can form a horn SN which lifts to P (R
X0 X X0 i > X0 In type theory, there is the unit type 1. Maps 1 — A represent terms a : A. Simplicial type theory introduces:
and we say h i1s a composite of f and g. Then, there i1s a 3-simplex witnessing the uniqueness of such a e A directed interval type 2 with two points 0,1 : 2 and the relation x : 20 < x < 1.
composition up to homotopy. -
. - X ¢ . | | e Simplices and their boundaries defined “geometrically": A" := {(t{, ..., th) 127 |t < --- < t1}.
Similarly, lifting a horn \ amounts to finding a homotopy inverse to f (at least on one side). For example (informally) Al =92 Al — {t:2]|0=tVt=1}. mapsout of AL are arrows with the
Y a7 Image of AL specifying the endpoints. Similarly, A? defines triples of maps.

Theorem (Quillen). Topological spaes and Kan complexes present the same homotopy theory. e Extension types of the form ({t:J| ¥} — A\£> used to define our lifts; This can be read as “maps

that restrict to a when ¢".

Definition. For a type A and a, b : A, we define the type of arrows homa(x, y) = <A1 — A|é9A1 >

Building (oo, 1)-categories as simplicial objects in co-groupoids [x.y]

2
A I1s a Segal type If the type Z <A2 —> A|([3XAy 2 f.g h]> Is contractible for all x, y, z : A,
We now introduce higher categories where arrows are directed, resembling morphisms rather than paths. h:hom 4(x.2) c T

f homa(x,y), g :homa(y, z).
For f : homa(x, y), we have a type isiso(f) of witnesses that it is an isomorphism.
Ais a Rezk type if idtoiso : (x =py) = (X =4 y), Where (x =4 y) = Z isiso(f), is an equivalence.

Definition. A Segal space W is a (Reedy fibrant) simplicial object in Kan complexes such that for all n > 2,
the Segal maps Wy — W1 Xy, W1 Xy, - - - Xy, Wh are equivalences.

With W7 now as the space of maps, we can compose two composable maps by lifting along

T f: homa(x,y)
Xo — X1 X x, X1. One can construct the space Wj,eqy, Of equivalences as a subspace of .

Theorem (Riehl-Shulman). There is a model of simplcial type theory in Reedy fibrant bisimplicial spaces,
Definition (Rezk). A Segal space W' is complete if the degeneracy sp : Wo — Wheequiv IS an equivalence. where Segal types correspond to Segal spaces and Rezk types correspond to complete Segal spaces.

Formalization in the Rzk proof assistant
Example: Comparing dependent arrows and arrows in ) -types
The Rzk proof assistant was developed by Nikolar Kudasov in order to formalize L .
NP . Pea by . Our current formalization efforts are concentrated around the behavior of
simplicial type theory. We first present examples of things we talked about, . i .
. . covariant type families. These are defined around the dependent hom-types: Cec
now written in Rzk: . . rzk
Given a type family C : A — U, u : C(x), v : C(y) and f : homa(x, y), #def hom-total-type-to-dhom
consider CA U
hom-types Al ( is-segal-A : is-segal A)
— ( xy : A)
o o dhomc(ry(u. v) = ( ] [ CCFO)IEY, CE L hom A x p
#def hom #def hom?2 . #2 ( C : A ->1U)
(AU (A : U In the code example on the right, we define a map ( is-covariant-C : is-covariant A C)
( xy : A) ( xy z : A) E u : C X;
.U ( £ : hom A ) _ v : Cy
L= (g : hzz A ; Z) ( EE: (prl(f:)__ f)) —é'dhCWanf)(LL V) : ( \sum ( k : hom (total-type A C) (x , uw) (y , v))
( t : \Delta~1) ( h : hom A x z) F:homz _AC(a)((X,U),(y,V)) , C ¢\t -> first (k t)) =_{hom A x y} £f))
> A [t ==0 |->x , .U I -> dhom A xy £ C u v
t ==11]->y] = to provide a comparison between dependent maps and maps in the ) -type =\ ko, p) -2
¢ o ( C( t1 , t2) : \Delta~2) “over’ f Nt ->
> A [ t2 == 0 [-> f t1 , ' ( transport
t1 == 1 |-> g t2 , ( hom A x y)
—= _ . . ( \ g -> dhom A x y g Cu v)
b2 et = b2 More on covariant families and future work (\r -> first (k r)) f p
: : : _ N _ _ ( \ s -> second (k s)) t)
Here the square brackets are notation for the respective extension types and Covariant type families have the property that the > -type defined by a covari- X
U is a generic universe of types. ™" comes before the specified type, and ":=" ant family over a Segal base type is Segal. Our current goal is to formalize a
before the specified term. version of composition for dependent arrows. Moreover, we contribute formal
proofs to the (“regular’) homotopy type theory library of Rzk.
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