
LATEX TikZposter

Formalizing Simplicial Type Theory
Theofanis Chatzidiamantis-Christoforidis

University of Bonn

Formalizing Simplicial Type Theory
Theofanis Chatzidiamantis-Christoforidis

University of Bonn

Acknowledgments. This work is part of an M.Sc. thesis project at the University of Bonn, supervised by Nima Rasekh. It consists of contributions to a collaborative formalization project in the Rzk proof assistant. We point
to [3] for more details on Rzk and the ongoing project.

Why ∞-categories?
• Homotopy theory: A higher category with objects, mor-

phisms, 2-morphisms, etc., can replace spaces, con-
tinuous maps, homotopies, homotopies between homo-
topies... We obtain homotopy-coherent structures, which
is not the case for T op.
In the same way, a higher category with all its morphisms
being invertible can replace the notion of a space, with its
points, paths, homotopies and higher homotopies. Such
objects are called ∞-groupoids.

• Category theory, higher algebra: Properties up to higher
coherences, e.g. Associativity (A∞-algebras), commuta-
tivity (E∞-rings). Unique compositions up to homotopy.

Sets vs Types vs Categories - The higher version

Simplicial Type Theory

Higher Category Theory Homotopy Type Theory

Spaces

Category Theory Type Theory

Sets

add directed maps
internal to types

Rezk types ↔ (∞, 1)-categories

types ↔ ∞-groupoids

Why synthetic ∞-categories?
Simplicial type theory, introduced in [1], extends homotopy type
theory by equipping types with hom-types, i.e., types of directed
arrows, which, under certain conditions, make types formally
represent ∞-categories. We can:

• Prove statements about higher categories, independent of
model.

• Do higher category theory in a simpler framework: Models
of ∞-categories are generally hard to work with.

• Formalize such statements in a proof assistant. Type
theory automatically provides us with computer-checkable
proofs via different (possibly interactive) proof assistants.

Spaces and ∞-groupoids

Definition. The simplex category ∆ has objects [n] := {0, 1, . . . , n} and morphisms order-preserving maps.
A simplcial set is a functor ∆op → Set. S := Fun(∆op,Set). We denote Xn := X(n) for X ∈ Obj(S).
We define the standard n-simplex ∆n := Hom∆(−, [n]). By the Yoneda lemma, HomS(∆

n, X) = Xn.

• We can visualize ∆0 as a point 0, ∆1 as a directed interval 0→ 1, ∆2 as a filled triangle
1

0 2

,

∆3 as a tetrahedron, etc.

• We can now make the analogy: X0 is the set of points, X1 is maps, X2 is homotopies between maps.

• We define the horn Λni as the union of all faces of ∆n except the i -th one.

Definition. A simplicial set X is a Kan complex if all horns in X lift to a simplex:
Λni X

∆n

Kan complexes are a model for ∞-groupoids! in Kan complexes behave like paths:

Example. If we have maps f , g ∈ X1, we can form a horn
x1

x0 x2

fg which lifts to
x1

x0 x2

f

h

g

and we say h is a composite of f and g. Then, there is a 3-simplex witnessing the uniqueness of such a
composition up to homotopy.

Similarly, lifting a horn
x

y y

f

id

amounts to finding a homotopy inverse to f (at least on one side).

Theorem (Quillen). Topological spaes and Kan complexes present the same homotopy theory.

Building (∞, 1)-categories as simplicial objects in ∞-groupoids
We now introduce higher categories where arrows are directed, resembling morphisms rather than paths.

Definition. A Segal space W is a (Reedy fibrant) simplicial object in Kan complexes such that for all n ≥ 2,
the Segal maps Wn → W1 ×W0W1 ×W0 · · · ×W0W1 are equivalences.

With W1 now as the space of maps, we can compose two composable maps by lifting along
X2

≃−→ X1 ×X0 X1. One can construct the space Whoequiv of equivalences as a subspace of W1.

Definition (Rezk). A Segal space W is complete if the degeneracy s0 : W0→ Whoequiv is an equivalence.

The higher groupoidal structure of types in homotopy type theory
For any a, b : A, there is an identity type

a =A b

where terms are paths p : a = b.
Then we can have higher paths

H : p =(a=Ab) q

between paths, paths between them, etc.

Theorem. On paths, there are

• Inverses x =A y → y =A x

• Concatenations x =A y → y =A x → x =A z

• Witnesses for associativity, etc.

Theorem (Kapulkin-Lumsdaine/Voevodsky). There is a model of homotopy type theory in S.

Building types with directed arrows as “simplicial objects in types”
In type theory, there is the unit type 1. Maps 1→ A represent terms a : A. Simplicial type theory introduces:

• A directed interval type 2 with two points 0, 1 : 2 and the relation x : 2 ⊢ 0 ≤ x ≤ 1.

• Simplices and their boundaries defined “geometrically": ∆n := {⟨t1, . . . , tn⟩ : 2n | tn ≤ · · · ≤ t1}.
For example (informally), ∆1 = 2, ∂∆1 = {t : 2 | 0 ≡ t ∨ t ≡ 1}. maps out of ∆1 are arrows with the
image of ∂∆1 specifying the endpoints. Similarly, ∆2 defines triples of maps.

• Extension types of the form
⟨
{t : J | ψ} → A|ϕα

⟩
used to define our lifts: This can be read as “maps

that restrict to α when ϕ".

Definition. For a type A and a, b : A, we define the type of arrows homA(x, y) :=
⟨
∆1→ A|∂∆1

[x,y]

⟩
.

A is a Segal type if the type
∑

h:homA(x,z)

⟨
∆2→ A|∂∆

2

[x,y ,z,f ,g,h]

⟩
is contractible for all x, y , z : A,

f : homA(x, y), g : homA(y , z).
For f : homA(x, y), we have a type isiso(f) of witnesses that it is an isomorphism.
A is a Rezk type if idtoiso : (x =A y)→ (x ∼=A y), where (x ∼=A y) :=

∑
f : homA(x,y)

isiso(f), is an equivalence.

Theorem (Riehl-Shulman). There is a model of simplcial type theory in Reedy fibrant bisimplicial spaces,
where Segal types correspond to Segal spaces and Rezk types correspond to complete Segal spaces.

Formalization in the Rzk proof assistant

The Rzk proof assistant was developed by Nikolai Kudasov in order to formalize
simplicial type theory. We first present examples of things we talked about,
now written in Rzk:

hom-types

‘‘‘rzk ‘‘‘rzk

#def hom #def hom2

(A : U) (A : U)

(x y : A) (x y z : A)

: U (f : hom A x y)

:= (g : hom A y z)

(t : \Delta ^1) (h : hom A x z)

-> A [t == 0 |-> x , : U

t == 1 |-> y] :=

‘‘‘ ((t1 , t2) : \Delta ^2)

-> A [t2 == 0 |-> f t1 ,

t1 == 1 |-> g t2 ,

t2 == t1 |-> h t2]

‘‘‘

Here the square brackets are notation for the respective extension types and
U is a generic universe of types. “:” comes before the specified type, and “ :=”
before the specified term.

Example: Comparing dependent arrows and arrows in
∑

-types

Our current formalization efforts are concentrated around the behavior of
covariant type families. These are defined around the dependent hom-types :
Given a type family C : A → U, u : C(x), v : C(y) and f : homA(x, y),
consider

dhomC(f)(u, v) :=

⟨∏
t:2

C(f (t))|∂∆
1

[u,v]

⟩
In the code example on the right, we define a map(∑

F :hom∑
a:AC(a)

((x,u),(y ,v))

(pr1(F) = f)
)
→ dhomC(f)(u, v)

to provide a comparison between dependent maps and maps in the
∑

-type
“over” f .

More on covariant families and future work

Covariant type families have the property that the
∑

-type defined by a covari-
ant family over a Segal base type is Segal. Our current goal is to formalize a
version of composition for dependent arrows. Moreover, we contribute formal
proofs to the (“regular”) homotopy type theory library of Rzk.

‘‘‘rzk

#def hom -total -type -to-dhom

(A : U)

(is-segal -A : is -segal A)

(x y : A)

(f : hom A x y)

(C : A -> U)

(is-covariant -C : is -covariant A C)

(u : C x)

(v : C y)

: (\sum (k : hom (total -type A C) (x , u) (y , v))

, ((\ t -> first (k t)) =_{hom A x y} f))

-> dhom A x y f C u v

:= \ (k , p) ->

\ t ->

(transport

(hom A x y)

(\ g -> dhom A x y g C u v)

(\ r -> first (k r)) f p

(\ s -> second (k s)) t)

‘‘‘

References

1. Emily Riehl and Michael Shulman, A type theory for synthetic ∞-categories. Higher Structures 1.1, 2017 , pp. 147-224.

2. Charles Rezk, A Model for the Homotopy Theory of Homotopy Theory. Transactions of the American Mathematical Society, vol. 353, no. 3, 2001, pp. 973-1007.

3. Nikolai Kudasov, Emily Riehl, and Jonathan Weinberger. Formalizing the∞-Categorical Yoneda Lemma. In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs. Association
for Computing Machinery, New York, NY, USA, 2024, pp. 274-290.

