UWO Reading Seminar on Topos Theory, Fall 2025

Organisers: Theofanis Chatzidiamantis-Christoforidis [tchatzid 'at' uwo.ca], Thomas Thorbjørnsen [tthorbjr 'at' uwo.ca].

Meetings: Mondays, 13:30-15:30, room MC108.

Schedule

Useful References

  1. Anel, M., Biedermann, G., Finster, E., & Joyal, A. (2022). Left-exact localizations of \(\infty\)-topoi I: Higher sheaves. Advances in Mathematics, 400.
  2. Anel, M., Biedermann, G., Finster, E., & Joyal, A. (2023). Left-exact Localizations of \(\infty\)-Topoi III: The Acyclic Product. arXiv: 2308.15573.
  3. Anel, M., Biedermann, G., Finster, E., & Joyal, A. (2024). Left-exact localizations of \(\infty\)-topoi II: Grothendieck topologies. Journal of Pure and Applied Algebra, 228(3).
  4. Anel, M., & Joyal, A. (2021). Topo-logie. In M. Anel & G. Catren (Eds.), New Spaces in Mathematics: Formal and Conceptual Reflections (pp. 155–257). Cambridge University Press.
  5. Bell, J. L. (2005). Set Theory: Boolean-Valued Models and Independence Proofs. Oxford University Press.
  6. Borceux, F. (1994). Handbook of categorical algebra. 3: Categories of sheaves (Vol. 52, p. xviii+522). Cambridge University Press, Cambridge.
  7. Caramello, O. (2018). Theories, sites, toposes (p. xii+368). Oxford University Press, Oxford.
  8. Chow, T. Y. (2008). A beginner’s guide to forcing. arXiv: 0712.1320.
  9. Jech, T. (2003). Set theory (millennium, p. xiv+769). Springer-Verlag, Berlin.
  10. Johnstone, P. T. (2002a). Sketches of an elephant: a topos theory compendium. Vol. 1 (Vol. 43, p. xxii+468+71). The Clarendon Press, Oxford University Press, New York.
  11. Johnstone, P. T. (2002b). Sketches of an elephant: a topos theory compendium. Vol. 2 (Vol. 44, pp. i–xxii, 469–1089 and I1–I71). The Clarendon Press, Oxford University Press, Oxford.
  12. Kashiwara, M., & Schapira, P. (2006). Categories and sheaves (Vol. 332, p. x+497). Springer-Verlag, Berlin.
  13. Lambek, J., & Scott, P. J. (1986). Introduction to higher order categorical logic (Vol. 7, p. x+293). Cambridge University Press, Cambridge.
  14. Lurie, J. (2009). Higher topos theory (Vol. 170, p. xviii+925). Princeton University Press, Princeton, NJ.
  15. Mac Lane, S., & Moerdijk, I. (1994). Sheaves in geometry and logic (p. xii+629). Springer-Verlag, New York.
  16. Makkai, M., & Reyes, G. E. (1977). First order categorical logic: Vol. Vol. 611 (p. viii+301). Springer-Verlag, Berlin-New York.
  17. McLarty, C. (1992). Elementary Categories, Elementary Toposes. Oxford University Press.
  18. Moerdijk, I. (1995). Classifying spaces and classifying topoi (Vol. 1616, p. vi+94). Springer-Verlag, Berlin.
  19. Olsson, M. (2016). Algebraic spaces and stacks (Vol. 62, p. xi+298). American Mathematical Society, Providence, RI.
  20. Rasekh, N. (2021). Filter quotients and non-presentable \((\infty,1)\)-toposes. Journal of Pure and Applied Algebra, 225(12).
  21. Rasekh, N. (2022). A Theory of Elementary Higher Toposes. arXiv: 1805.03805.
  22. Rezk, C. (2019). Lectures on Higher Topos Theory. Available at https://rezk.web.illinois.edu/leeds-lectures-2019.pdf.
  23. Riehl, E. (2024). On the \(\infty\)-topos semantics of homotopy type theory. Bulletin of the London Mathematical Society, 56(2), 461–517.
  24. Shulman, M. (2019). All \((\infty,1)\)-toposes have strict univalent universes. arXiv: 1904.07004.